Connect with:
Saturday / July 6. 2024
HomePosts Tagged "plant breeding"

By K C Bansal, Adjunct Professor, The Centre for Crop and Food Innovation, Murdoch University, Western Australia 6190, Australia; Former Director, National Bureau of Plant Genetic Resources (ICAR), New Delhi; Former Secretary, National Academy of Agricultural Sciences, India.

It has been projected that to meet the future food requirements in India, we need to increase our food production from the current level of 330 MT to 520 MT by 2050. Increasing crop yields remains a primary objective and high-yielding varieties of staple crops such as rice, wheat, maize, millets, pulses, and oilseeds are constantly developed to meet the growing demand for food. However, since the 1990s, the average annual increases in yields of major crops have decreased as compared to the 1960s. Also, according to the Food and Agriculture Organization of the United Nations (FAO) analysis, average crop productivity levels of staple food crops and fruits and vegetables are significantly less in India than in the USA and China. Furthermore, frequent occurrence of extreme weather events like floods, cyclones, droughts, heat waves, etc. is adversely impacting Indian agriculture. The number of such events have increased over the past five decades from 50 in 1971-1980 to more than 100 during 2011-2020. In light of these crucial developments, let’s take a closer look at gene editing (GEd) technology adoption in agriculture in the country.

Plant breeding is absolutely necessary for improving food and nutritional security globally. It has been shown that more than 50 per cent of crop productivity gains so far are attributed to improved crop varieties.  Hence, it is important that efforts are made to significantly improve the genetics of crops to further increase yield and its stability across environments, and to overcome the adverse impact of dwindling natural resources and emerging pests and diseases on crop production.

In this context, it is paramount that we harness the full potential of CRISPR-based genome editing for genetically improving crops for increasing productivity and adaptation to the fast-changing climate. Globally, application of gene editing is all set to play a pivotal role in ushering the next revolution in agriculture. Enabling policy environment and science-driven regulatory framework already in place in several countries worldwide, including India have facilitated addressing global challenges related to food security, nutrition, and sustainable agriculture through the use of CRISPR-based genome editing. On March 30, 2022, the Government of India announced exemption of the genome edited plants falling under the categories of SDN-1 and SDN-2, which are free of exogenous introduced DNA, from the provisions of the Rules, 1989 (Rules 7-11) of  the Environment (Protection) Act, 1986.

CRISPR-mediated genome editing is a revolutionary and powerful technology that allows precise modifications in native genes of plants significantly speeding up the process of developing new crop varieties with desirable traits. Thus, genome editing holds tremendous promise and potential to revolutionise crop breeding by accelerating genetic improvement of crops and transforming agriculture to be more productive, sustainable and resilient to the challenges posed by adverse weather events.

While several genome-edited crops with improved traits such as high-oleic soybean in USA, tomato with increased gamma-aminobutyric acid and high-starch maize in Japan, pungency-free mustard green in USA, fungal resistant wheat in China,  and reduced browning banana for the Philippines have already been approved or commercialised, concerted efforts are needed for transforming the Indian agriculture to make it a climate smart and sustainable system as the most viable option for adoption by farmers by 2030 using genome-edited supplemented plant breeding. Importantly, two rice events developed by Indian researchers, one with higher water use efficiency, and the other with higher grain yield are undergoing All India Coordinated Research Projects (AICRP) field trials under Indian Council of Agricultural Research (ICAR) with encouraging results. More network projects are in progress with recent funding by the Government of India to the tune of Rs 500 crore to apply genome editing to a range of crops, which includes 24 field crops and 15 horticultural crops, and allied sectors.

Future of Genome Editing

Crop breeding efforts need to be strengthened by deploying genome editing tools for developing climate resilient varieties with inbuilt tolerance to multiple abiotic stresses such as drought, heat, salinity, and flooding to help mitigate yield losses and stabilise agricultural production under adverse environmental conditions. Genome editing has shown promise in reducing greenhouse gas (GHG) emissions in paddy. Emphasis to be given on developing crop varieties with reduced GHG emissions. Not only methane emission from paddy fields, reducing nitrous oxide emission from the nitrogen-fertilised agricultural soils need to be paid immediate attention. Nitrous oxide is much more potent than methane or CO2 in deriving a rise in temperature. Also, applying genome editing for early maturity traits will enable crops to thrive in variable climatic conditions. Additionally, climate resilience can be achieved by developing CO2-responsive crops to sustain higher productivity under a CO2-rich, warmer climate by multiplex gene editing. Knocking out genes to reduce stomatal density for maintaining photosynthesis and enhancing water conservation in rice has been demonstrated by researchers. Moreover, recent demonstration of achieving a key step in the evolution of C4 photosynthesis in rice by genome editing will boost the confidence of researchers to develop crops for capturing atmospheric CO2 more efficiently.

To read more click on: https://agrospectrumasia.com/e-magazine

By K C Bansal, Adjunct Professor, The

Partnership will help mission-driven entrepreneurs grow their businesses and co-develop sustainable agrifood systems.

KWS has joined forces with StartLife, Europe’s longest-running accelerator for agrifoodtech startups, to advance its innovation approach and collaborate with startups. Together, KWS and StartLife will help mission-driven entrepreneurs grow their businesses and co-develop sustainable agrifood systems.

The agriculture business is facing many challenges, ranging from climate change, an increase in food demand, to political requirements. KWS and StartLife believe that plant breeding innovation plays a pivotal role in solving these agricultural challenges felt across the world. Both organizations also believe that partnerships are key to development and the adoption of innovative approaches to improve plant breeding, agriculture methods, and sustainable farming practices.

Open innovation gateway

To accelerate progress, KWS adopts an open innovation approach and proactively seeks collaboration with startups that offer (potential) breakthrough technologies. KWS already actively works with early and later-stage startups in various ways, including joint proof of concept projects, strategic collaborations, licensing agreements, joint ventures, and minority participations. The partnership provides KWS a gateway to StartLife’s global agrifoodtech startup community.

“Through this partnership, we want to gain better access to highly relevant startups, connect with the groundbreaking innovation within the StartLife ecosystem and raise more awareness on our open innovation approach. The headquarters of KWS vegetable business is based on Wageningen Campus and operates from the same building as StartLife. Therefore, it is a logical next step to also engage in the venture scouting activities of StartLife to open our doors for startups,” explains Alexander Wiegelmann, Head of New Business Ventures at KWS.

Call for technology and business development

StartLife believes KWS through its systematic review processes is well positioned to realize startup opportunities and can provide startups with constructive feedback and guidance to find the right product market fit.

“We are delighted to see KWS already showing dedication to supporting and working with startups. They have much to offer to our startups, including field trial facilities, laboratories, technology challenges and the opportunity to offer services directly to a broad customer base of KWS via its digital platform, myKWS.” comments Annelies Schenk, Manager Innovation & Partnerships at StartLife. “Together, we can truly accelerate the growth of startups and create positive impact.”

StartLife will support KWS by matching them with startups that work on technologies addressing product and business development. Product development spans from genetics research, breeding technologies, emerging crops, production technologies, seed technologies and treatments to automation, and digital services. Business development regarding startups ranges from strategic collaborations to new business opportunities and novel market places.

“We warmly invite startups that are interested in working with KWS to contact StartLife for an introduction”, concludes Schenk.

Partnership will help mission-driven entrepreneurs grow their