Connect with:
Sunday / December 8. 2024
HomePosts Tagged "Hyperspectral Technology"

 In an exclusive interaction with AgroSpectrum, Amandeep Panwar, Co-founder & Director of BharatRohan – Agri-tech Drone, shares insights into this collaboration and the potential impact of hyperspectral technology on Indian agriculture.

BharatRohan, an Ag-tech firm based in India, specialising in empowering farmers through advanced UAV-based decision support systems utilising Hyperspectral Imaging technology has a mission to enhance traceable, sustainable, and secure food supply chains while improving farmers’ profitability. In a recent development, BharatRohan has collaborated with AgHub, the agricultural innovation hub of Professor Jayashankar Telangana State Agricultural University (PJTSAU), to develop hyperspectral libraries for paddy and cotton crops. In an exclusive interaction with AgroSpectrum, Amandeep Panwar, Co-founder & Director of BharatRohan – Agri-tech Drone, shares insights into this collaboration and the potential impact of hyperspectral technology on Indian agriculture. Edited excerpts; 

Recently you tied up with AgHub at Professor Jayashankar Telangana State Agricultural University (PJTSAU) to develop hyperspectral libraries for paddy and cotton crop. Please elaborate on this development.

Our collaboration with AgHub at PJTSAU marks a significant advancement in agricultural technology, particularly in paddy and cotton crops. Through this collaboration, we are focused on developing hyperspectral libraries specifically designed for these crops, leveraging drone technology equipped with hyperspectral imaging capabilities.

Hyperspectral imaging enables the detailed analysis of crops by capturing a wide range of wavelengths, extending beyond human visual perception. Through the creation of these specialised libraries, we can catalogue and analyse the distinct spectral signatures of both healthy and distressed crops, including those affected by pests, diseases, or environmental factors.

Tailoring hyperspectral libraries to paddy and cotton crops allows for customised recommendations and solutions based on their unique spectral characteristics. This precision ensures that interventions are targeted and effective in addressing specific crop health challenges, empowering farmers with tailored insights to optimise productivity and sustainability.

Lately, the agricultural industry has witnessed a lot of development in the technology sector. What is your take on this and how will this help the growth of Indian agriculture?

The recent surge of technological advancements in the agriculture sector is undoubtedly a game-changer for Indian agriculture, holding immense promise for revolutionising traditional farming methods and addressing the challenges faced by farmers across the country. Embracing agricultural technology isn’t merely about maintaining competitiveness; it’s about fulfilling our mission to empower farmers and ensure the long-term sustainability of Indian agriculture.

Through the utilisation of drone-based hyperspectral imaging, we offer farmers innovative solutions to optimise their operations, enhance productivity, and manage risks effectively. These advancements enable us to extend our impact, particularly to remote and marginalised farming communities. Leveraging digital platforms like WhatsApp chatbot and dashboard, we onboard farmers onto our platform, providing them with crucial updates on weather conditions, distributing survey prescription maps, and facilitating connections with agronomists. Additionally, our dashboard serves as a centralised hub for tracking all farmer activities, ensuring traceability and potentially securing higher market prices for their produce.

Furthermore, I recognise the significant potential of agricultural technology to stimulate entrepreneurship and drive economic development in rural areas. Initiatives such as training individuals as drone pilots and offering drone franchise ownership opportunities have the potential to create new avenues for economic empowerment and growth within rural communities.

You have said that hyperspectral technology will help in attaining healthier crops, reducing input costs and enhancing yields. Could you shed some light on this?

Hyperspectral technology plays a crucial role in achieving healthier crops, reducing input costs, and enhancing yields in agriculture. Early Detection of Crop Stress: Hyperspectral imaging allows for the early detection of crop stressors such as nutrient deficiencies, pest infestations, diseases, and water stress. By capturing detailed spectral data beyond the range of human vision, hyperspectral sensors can identify subtle changes in plant health before they become visually apparent. This early detection enables farmers to take proactive measures to address issues promptly, preventing significant yield losses.

Precision Farming Practices: With hyperspectral technology, farmers can implement precision farming practices tailored to the specific needs of their crops. By analysing spectral signatures, farmers can identify areas of the field that require targeted interventions, such as precise application of fertilisers, pesticides, and water. This targeted approach minimises input wastage, optimises resource utilisation, and promotes efficient crop growth.

Optimised Resource Management: Hyperspectral imaging enables precise monitoring of crop health and growth parameters, allowing farmers to optimise resource management decisions. By understanding the nutritional needs and growth patterns of their crops, farmers can adjust inputs such as fertilisers, irrigation, and crop protection products in real-time, ensuring that resources are applied efficiently to support optimal crop development.

Enhanced Yields and Quality: By leveraging hyperspectral technology to monitor and manage crop health effectively, farmers can achieve higher yields and improved crop quality. Early detection and intervention against stressors result in healthier plants, reduced crop losses, and ultimately, increased productivity. Additionally, by fine-tuning inputs based on spectral data, farmers can optimise crop development and achieve better quality produce, commanding higher prices in the market.

Cost Savings: Hyperspectral technology helps farmers reduce input costs by minimising the overuse of fertilisers, pesticides, and water. By applying inputs only where and when needed, farmers can save on expenses while maximising the effectiveness of their agricultural practices. Furthermore, the early detection of crop stressors allows for timely interventions, preventing the need for costly corrective measures later in the season.

To read more click on: https://agrospectrumasia.com/e-magazine.

 In an exclusive interaction with AgroSpectrum, Amandeep

By Rishabh Choudhary, Co-Founder & Chief Technology Officer, BharatRohan Airborne Innovations 

To sustainably boost the country’s economic prowess, agriculture in India is undergoing a profound transformation, and at the heart of this revolution is hyperspectral technology. Hyperspectral imaging has rapidly become an indispensable tool for modern farming, offering a powerful and precise means to harness data beyond the visible spectrum. This extraordinary capability allows farmers to make data-driven decisions, contributing to sustainable and effective agricultural practices. In this article, we explore the various ways in which hyperspectral technology is reshaping agriculture and promoting sustainability.

Traditional farming methods often rely on the human eye to evaluate crop health, quality, and environmental conditions. However, hyperspectral imaging extends our perception by capturing data across hundreds of narrow, contiguous spectral bands that go beyond the limits of human vision. Here we explore the implications of this technology in agriculture:

Visible Data Range (400 to 700 nanometers): While hyperspectral sensors encompass wavelengths beyond human vision, they also excel in capturing data within the visible spectrum with unparalleled precision. This data range is invaluable for assessing crop health, quality, and more. It detects subtle variations in colour and pigmentation, serving as an indicator of crop stress, disease, or nutrient deficiencies.

Data Analytics: Hyperspectral data is processed using advanced analytics and machine learning, generating actionable insights that guide data-driven decisions in crop management. These insights include the ability to pinpoint specific irregularities in crop health, detect patterns related to nutrient deficiencies, and track the progression of diseases in plants.

Enhancing Crop Quality: With hyperspectral imagery-based decision support system, farmers can assess the quality of their crops more accurately. This is particularly significant for high-value crops like fruits and vegetables, where appearance and quality are crucial for market success. Hyperspectral imaging can analyse the spectral signature of produce, helping farmers evaluate factors such as sugar content, ripeness, and the presence of blemishes or diseases.

Optimising Resource Use: By monitoring fields throughout the crop cycle, hyperspectral imaging contributes to the efficient use of resources, such as water and irrigation. Farmers can make data-driven decisions about when and how much to irrigate, thereby promoting water conservation. Hyperspectral data enables precise assessments of soil moisture levels and plant stress, allowing for irrigation schedules responsive to crop needs.

Nutrient Management: By analysing the spectral signatures of crops, hyperspectral technology evaluates plant nutrient levels. This data empowers farmers to precisely apply fertilisers and soil supplements where necessary, minimising excess use and its environmental impact. Additionally, hyperspectral imaging can identify nutrient deficiencies by scrutinising the plant’s spectral reflectance.

Supporting Integrated Pest Management (IPM): Hyperspectral technology supports IPM practices by offering insights into the presence of pests and their impact on crops. This information allows farmers to implement targeted pest control strategies, reducing the reliance on broad-spectrum pesticides and minimising ecological harm. Hyperspectral imaging can even detect early signs of pest infestations through alterations in the spectral signature of crops.

Precision Agriculture: Hyperspectral imaging provides precise information about crop health and nutrient levels. With this data, farmers can apply fertilisers and other inputs only where and when needed, minimising wastage and environmental impact while maximising crop yields. It supports variable rate application, enabling farmers to adjust the application of fertilisers, pesticides, and herbicides based on the specific conditions in different field areas.

To read more click on: https://agrospectrumindia.com/e-magazine

By Rishabh Choudhary, Co-Founder & Chief