Connect with:
Saturday / December 21. 2024
HomePosts Tagged "Dr Ratna Kumria"

 By Dr Ratna Kumria, Senior Director – Biotechnology, Federation of Seed Industry of India

Technology in agriculture, particularly, seeds have great potential to provide sustainable, profitable yet affordable solutions for a wide array of challenges including climate change. But to maximise the benefits, it is important to establish an open, unbiased and enabling policy environment. On National Technology Day, the seed industry reiterates the importance of biotechnological solutions as vital aids in addressing the challenges confronting the agriculture sector.

Rising global temperatures, coupled with increasingly severe and unpredictable weather patterns, have been exacerbated by the greenhouse warming effect, contributing to the occurrence of the El Niño weather phenomenon. Heatwaves, insufficient rainfall, and changes in monsoon patterns have collectively resulted in significant water stress in agricultural fields, leading to reduced crop yields. Rising temperatures can lead to heat stress in crops, affecting their growth and development. Heatwaves during critical stages of crop growth can reduce yields and quality.

India is close to reaching a tipping point where groundwater levels will plummet, according to a 2023 UN Water report. The northern parts of the country have lost 95 per cent of their groundwater between 2002 and 2022, and some areas in the Indo-Gangetic basin have already passed the groundwater depletion tipping point. India is the world’s largest consumer of groundwater, using about a quarter of the world’s total.

Need for developing drought-resistant crop varieties

The combination of water scarcity, heatwaves, frequent droughts, and unpredictable monsoons presents a significant challenge to India’s agricultural productivity. These challenges underscore the urgent need to prioritise the development of drought-resistant crop varieties. With climate change exacerbating these issues, the cultivation of crops with enhanced drought tolerance is increasingly essential to safeguarding food security of the nation. Redirecting focus towards the breeding and promotion of drought-resistant varieties is imperative to ensure the resilience and sustainability of India’s agricultural sector in the face of mounting environmental pressures.

Plant breeders in both private and public sectors have dedicated their efforts to develop varieties and hybrids capable of withstanding drought stress across various crops. Although the process is gradual, there have been notable successes in breeding drought-tolerant crops. Examples include conventional breeding programmes such as the creation of rice, wheat, and Indian mustard varieties resilient to salt and alkali soils by the Central Soil Salinity Research Institute in Karnal. Additionally, maize hybrids with heightened drought tolerance have been developed, along with endeavours to integrate salt tolerance into wheat from wild relatives. Notably, drought tolerance has been prioritised as a selection trait in the generation of new maize and wheat germplasm by the International Maize and Wheat Improvement Centre (CIMMYT). The advent of genetic modification (GM) and gene editing technologies offers a swifter route to producing drought-tolerant crops. Presently, GM varieties of Glycine max (soybean) and Zea mays (maize), as well as gene-edited wheat for drought tolerance, have been developed and sanctioned in many countries.

The private seed industry in India has been a key driver of technological advancements in agriculture, with significant contributions to the sector’s growth and development. This sector has witnessed a steady increase in investments in research and development in advanced technologies, reflecting a strong commitment to exploring innovations and several members of Federation of Seed Industry of India invest, on an average, over 10 percent of the annual turnover for R&D. Furthermore, the private seed sector has introduced a wide range of high-yielding hybrid seeds, genetically modified crops, and biofortified varieties, catering to the diverse needs of Indian farmers and consumers. These technological interventions have led to notable improvements in crop yields, quality, and resilience, contributing to food security and sustainable agriculture practices. All these efforts collectively empowered the farmers particularly, smallholders, to enhance their productivity and profitability, driving overall agricultural growth in India. Overall, the private seed industry’s relentless focus on technology-driven solutions, coupled with strategic investments and market expansion efforts, has positioned it as a key player in India’s agricultural transformation, fostering innovation, sustainability, and economic development in the sector.

In the current scenario, climate change poses a formidable threat to both agricultural sustainability and food security. Increasing frequency of extreme weather events underscores the urgency of addressing these challenges. As we navigate these uncertain conditions, it’s evident that our agricultural systems face mounting pressures. However, amidst these challenges lies an opportunity for technologies in seed including biotechnology to play a pivotal role in adaptation and resilience.

As we mark National Technology Day, it’s imperative for policymakers, researchers, and the seed industry to collaborate in promoting the adoption of biotechnology-driven solutions among farmers. By enhancing the genetic makeup of crops, we can bolster their ability to withstand prolonged periods of drought and other climatic stresses. This is the time for the policymakers, researchers and seed industry to come together to promote this sustainable solution to the farmers and make the agri-food system climate-resilient.

 By Dr Ratna Kumria, Senior Director –

 By Dr Ratna Kumria, Director, Biotechnology Alliance for Agri Innovation (AAI)

Gene editing offers an accurate, predictable, quick, and economical method for crop improvement. Due to its precision, it offers the opportunity to increase nutrient levels, decrease anti-nutrients, and improve the shelf life of food to preserve quality and nutrition. This technology cannot provide solutions for all farming challenges or plant breeding bottlenecks, but it can certainly streamline the process towards greater efficiency. It provides an opportunity to address hunger and malnutrition regionally using traditional, local crops. It can also enable local solutions to conserve biodiversity and resources, moving towards better agriculture.

Gene editing refers to making changes in the genome of an organism using various nucleases with distinct specificities and modes of action. The nucleases are programmed to target particular sequences for cutting, although the repair mechanisms can either be random or designed with external templates. While traditional nucleases cut both strands of DNA, some have been adapted to cut a single strand and utilise RNA as a template for making alterations. The selection of the appropriate gene editing tool is based on the target’s cost and feasibility. As new nucleases are being discovered and editing tools developed, gene editing is finding diverse applications. Although currently used in therapeutics, it is expected to have far-reaching effects on crop improvement and agriculture.

Humans have been selectively breeding plants and animals for centuries, long before the field of genetics was established. Today’s cultivated crops, whether ornamental or used for food, as well as domesticated animals are very different from their wild counterparts. For example, maize was selected and bred from its ancestor teosinte and likewise the fibrous, blander version of ancient watermelon fruits, as also other food crops were bred for a better flavour and texture that is more palatable to humans. Domesticating plants and animals are a painstaking and repetitive process that has been ongoing for hundreds, and sometimes thousands, of years.

Advancements in genetics have accelerated plant breeding and crop improvement over the past century. With the knowledge of genetics, breeders were able to identify variations and select for new genetic combinations that were better suited for cultivation and consumption. In addition to identifying variations, breeders have also been using chemicals or radiation to induce random mutations that result in beneficial genetic modifications. This mutation breeding has led to the creation of over 3000 new varieties of crops across the globe, during the last few decades. As a result of these plant breeding efforts, cereal crop production has tripled during this period, with only a 30 per cent increase in land under cultivation. India’s green revolution, which transformed it from a food-deficient nation to a food-surplus one, owes much of its success to plant breeding efforts.

However, the haphazard nature of mutation-generation makes selecting the relevant modifications an expensive, time-consuming, and laborious process. Conventional breeding is a lengthy process that depends on the number and duration of growing seasons per year, as well as the time it takes for plants to mature. This process can be even more prolonged when dealing with trees, perennials or assembling multiple traits through multi-stage crossing, selection, and testing. Additionally, the randomness of induced mutagenesis adds another dimension to the selection and testing required for large-scale screening. To make the breeding process more efficient over time, various technological interventions have been introduced, including molecular markers, double haploids, genome-wide association studies (GWAS), and other prediction tools.

To read more click on: https://agrospectrumindia.com/e-magazine

 By Dr Ratna Kumria, Director, Biotechnology Alliance